Prove e(A,X+Y) = e(A,X) \cdot e(A,Y) where e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T is a bilinear pairing and A,X,Y \in \mathbb{G}
Since X,Y \in \mathbb{G}, assume X = xP, Y = yP where P is a generator of \mathbb{G}, x,y \in \mathbb{Z}_p where p is the order of \mathbb{G}
e(A,X+Y) = e(A,xP+yP) = e(A,P)^{x+y} = e(A,P)^x \cdot e(A,P)^y
= e(A,xP) \cdot e(A,yP) = e(A,X) \cdot e(A,Y)