Processing math: 0%

Wednesday, January 20, 2010

The Legendre Symbol

Introduction:

The Legendre Symbol tells us that whether a number x \in \mathbf{Z}^*_p where p is prime is a perfect square (also called quadratic residue).

Definition:

For a prime p and x \in \mathbf{Z}^*_p, the Legendre Symbol \mathbf{J}_p(x) is defined as:
\mathbf{J}_p(x) = \begin{cases} 1 & \mbox{if } x\mbox{ is a perfect square in }\mathbf{Z}^*_p \\ 0 & \mbox{if }gcd(x,p) \neq 1 \\ -1 & \mbox{if } x\mbox{ is not a perfect square in }\mathbf{Z}^*_p \end{cases}
The Legendre Symbol is computed by \mathbf{J}_p(x) \equiv x^{\frac{p-1}{2}} \mbox{ mod } p

Discussion and Proof:

  • Since p is prime, x = kp where k \in \mathbb{Z} if gcd(x,p) \neq 1. As a result, \mathbf{J}_p(x) = (kp)^{\frac{p-1}{2}} = 0 \mbox{ mod } p
  • If x is a perfect square in \mathbf{Z}^*_p and g is a generator of \mathbf{Z}^*_p, x can be written as g^{2i} \mbox{ mod } p \mbox{ where } 1 \leq 2i \leq p-1. As a result, \mathbf{J}_p(x) = g^{\frac{2i(p-1)}{2}} = g^{i(p-1)} = 1 \mbox{ mod }p
  • If x is not a perfect square in \mathbf{Z}^*_p and g is a generator of \mathbf{Z}^*_p, x can be written as g^{i} \mbox{ mod } p \mbox{ where } 1 \leq i \leq p-1. Since i is odd, \frac{i(p-1)}{2} is not an integer and \mathbf{J}_p(x) = g^{\frac{i(p-1)}{2}} = \sqrt{1} = \pm{1}. However, this does not quite match the definition. To continue the proof, we have to prove thatx is a perfect square in \mathbf{Z}^*_p if and only if x^{\frac{p-1}{2}} = 1 \mbox{ mod } p:
    \Rightarrow Assume x is a perfect square in \mathbf{Z}^*_p, x can be written as g^{2i} \mbox{ mod } p \mbox{ where } 1 \leq 2i \leq p-1 and \mathbf{J}_p(x) = g^{\frac{2i(p-1)}{2}} = g^{i(p-1)} = 1 \mbox{ mod }p
    \Leftarrow Assume x^{\frac{p-1}{2}} = 1 \mbox{ mod } p. Since x \in \mathbf{Z}^*_p, x can be written as g^{i} \mbox{ mod } p where 1 \leq i \leq p-1. Since g is a generator of \mathbf{Z}^*_pg has the order (p-1). Only g^{p-1} \equiv 1 \mbox{ mod } p and g^i \not\equiv 1 \mbox{ for } i < p-1. As a result, (p-1)  must divide \frac{i(p-1)}{2} and so i is even and x is a perfect square in \mathbf{Z}^*_p
    As a result, \mathbf{J}_p(x) \neq 1 if x is not a perfect square in \mathbf{Z}^*_p and so \mathbf{J}_p(x) = -1

No comments:

Post a Comment