Processing math: 0%

Friday, January 22, 2010

Mathematical Prove (1)

Prove (1-x)^{x^{-1}N} < e^{-N} for x \in (0,1)

Assume (1-x)^{x^{-1}N} < e^{-N}, then
ln((1-x)^{x^{-1}N}) < -N
x^{-1}Nln(1-x) < -N
x^{-1} ln(1-x) < -1
ln(1-x) < -x
ln(1-x) + x < 0

So we can prove ln(1-x) + x < 0 instead
Let f(x) = ln(1-x) + x,
f'(x) = \frac{d}{d(1-x)}ln(1-x)\cdot\frac{d}{dx}(1-x)+\frac{dx}{dx} = -\frac{1}{1-x} + 1

Since f'(x) < 0 for x \in (0,1) and f'(x) = 0 when x = 0, f(x) is strictly decreasing for x \in (0,1) with the greatest value f(0) = ln(1-0) + 0 = 0. Therefore, f(x) < 0 for x \in (0,1) and so (1-x)^{x^{-1}N} < e^{-N} for x \in (0,1)

No comments:

Post a Comment